Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua(μ_{2}-3-carboxypyrazine-2-carboxylato)(μ_{2}-pyrazine-2,3-dicarboxylic acid)potassium(I)]

Mustafa Tombul, ${ }^{\mathbf{a} *}$ Kutalmis Güven ${ }^{\mathbf{b}}$ and Ingrid Svoboda ${ }^{\mathbf{c}}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, University of Kirikkale, Campus Yahsihan, 71450 Kirikkale, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Science, University of Kirikkale, Campus Yahsihan, 71450 Kirikkale, Turkey, and ${ }^{\text {c Structural Research, Materials Science, Darmstadt University of Technology, }}$ Petersen Strasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: mustafatombul38@gmail.com

Received 17 October 2007; accepted 8 December 2007

Key indicators: single-crystal X-ray study; $T=303 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.089$; data-to-parameter ratio $=11.6$.

The structural unit of the title compound, $\left[\mathrm{K}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid molecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water molecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in which water acts as the donor.

Related literature

For related literature, see: Clegg \& Liddle (2004); Cuesta et al. (2003); Ptasiewicz-Bak \& Leciejewicz (1997a,b); Starosta \& Leciejewicz (2005); Takusagawa \& Shimada (1973); Tombul et al. (2006, 2007). Richard et al. (1973). Nepveu et al. (1993).

Experimental

Crystal data
$\left[\mathrm{K}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad \gamma=64.24(2)^{\circ}$
$M_{r}=410.35$
$V=404.43(13) \AA^{3}$
Triclinic, $P \overline{1}$
$a=7.4171$ (11) £
$b=8.0252(12) \AA$
$c=8.1153$ (13) \AA
$\alpha=68.39$ (2) ${ }^{\circ}$
$\beta=81.18(1)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: numerical [using a multifaceted crystal model based on expressions
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=303(2) \mathrm{K}$
$0.40 \times 0.36 \times 0.14 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.089$
H atoms treated by a mixture of
$S=0.82$
1639 reflections
141 parameters
3 restraints
derived by Clark \& Reid (1995)]
$T_{\text {min }}=0.858, T_{\text {max }}=0.947$ 4541 measured reflections 1639 independent reflections 1357 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Table 1
Selected bond lengths (\AA).

N1-K1	2.8655 (15)	$\mathrm{K} 1-\mathrm{O}^{\text {i }}$	2.8771 (15)
O1-K1	2.8995 (12)	$\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	2.8995 (12)
O3-K1	2.8771 (15)	$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	3.0897 (13)
$\mathrm{K} 1-\mathrm{N} 1^{\text {i }}$	2.8655 (15)	$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	3.0897 (13)

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x-1, y+1, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {iv }}$	0.85 (2)	1.899 (10)	2.7334 (17)	167 (2)
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{~N}{ }^{\text {ii }}$	0.848 (9)	2.035 (10)	2.8701 (19)	168 (2)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\text {v }}$	0.86 (3)	1.76 (3)	2.5994 (17)	168 (2)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$	0.80 (4)	1.68 (4)	2.480 (2)	171 (5)
Symmetry codes: $x+1, y-1, z+1$.	$-x+1$	-z+1;	$-x+1,-y$	z+1; (v)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006).;

metal-organic compounds

software used to prepare material for publication: publCIF (Westrip, 2008).

The authors gratefully acknowledge Kırıkkale University for the financial support of this research and Professor Dr Hartmut Fuess, Darmstadt University of Technology, for use of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2158).

References

Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Clegg, W. \& Liddle, S. T. (2004). Acta Cryst. E60, m1495-m1497.

Cuesta, R., Glidewell, C., López, R. \& Low, J. N. (2003). Acta Cryst. C59, m315-m318
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nepveu, F., Berkaoui, M. 'H. \& Walz, L. (1993). Acta Cryst. C49, 1465-1466. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis CCD. Versions 1.171.31.4 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Ptasiewicz-Bak, H. \& Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500
Ptasiewicz-Bak, H. \& Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.
Richard, P., Tran Qui, D. \& Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Starosta, W. \& Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.
Takusagawa, T. \& Shimada, A. (1973). Chem. Lett. pp. 1121-1126.
Tombul, M., Güven, K. \& Alkış, N. (2006). Acta Cryst. E62, m945-m947.
Tombul, M., Güven, K. \& Büyükgüngör, O. (2007). Acta Cryst. E63, m1783m1784.
Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Poly[diaqua (μ_{2}-3-carboxypyrazine-2-carboxylato) (μ_{2}-pyrazine-2,3-dicarboxylic acid)potassium(I)]

M. Tombul, K. Güven and I. Svoboda

Comment

Pyrazine-2,3-dicarboxylic acid (Takusagawa \& Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks ($\mathrm{nD}, \mathrm{n}=1-3$), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N -heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. These include the calcium (Ptasiewicz-Bak- \& Leciejewicz, 1997a; Starosta \& Leciejewicz, 2005), magnesium (Ptasiewicz-Bak- H. \& Leciejewicz, 1997b), sodium (Tombul et al., 2006) and caesium (Tombul et al., 2007) complexes. We present here the synthesis and crystal structure of the hydrated potassium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

The structural unit of the title compound, (I), contains one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, as the potassium ion lies on an inversion centre. Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups $(\mathrm{O} 1)$ and together with the symmetry-related oxygen atom $\left(\mathrm{O1}^{v}\right)$ which is also half deprotonated, completes the charge balance of the cation. In the crystal structure, the anion or acid molecule is linked to two potassium cations, while the K^{+}cation is surrounded by four organic ligands, two of which are coordinated by utilizing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each potassium cation is coordinated by two water molecules, achieving a coordination number of eight. The primary coordination comprises six oxygen atoms, together with two nitrogen atoms. The planes of the carboxylic/carboxylate groups ($\mathrm{O} 4 / \mathrm{C} 5 / \mathrm{O} 1$) and ($\mathrm{O} 2 / \mathrm{C} 6 / \mathrm{O} 5$) form dihedral angles with the ring plane of 54.33 (14) and 53.75 (14) ${ }^{\circ}$, respectively. The K - O distances are in the range 2.877 (2) \AA to 3.089 (2) \AA, in accordance with the corresponding values reported for other potassium complexes (Clegg \& Liddle, 2004; Cuesta et al., 2003).

In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms (Table 2). Atom H 1 is involved in this bond and maintains the charge balance within the structure. The ordered carboxyl group forms a hydrogen bond in which water serves as acceptor. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring.

Experimental

$\mathrm{K}_{2} \mathrm{CO}_{3}$ ($346 \mathrm{mg}, 2.5 \mathrm{mmol}$) was carefully added to an aqueous solution (20 ml) of pyrazine-2,3-dicarboxylic acid (1680 $\mathrm{mg}, 10 \mathrm{mmol}$), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 333 K for 2.5 h , until it solidified. The solid product was redissolved in water $(10 \mathrm{ml})$ and allowed to stand for a week at room temperature, after which transparent fine crystals were harvested.

supplementary materials

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. O-bound H atoms were refined freely.

Figures

Fig. 1. A segment of the structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry Codes: (ii) $-x+1,-y,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x-1, y+1, z$.]

Fig. 2. A packing diagram for (I). Dashed lines indicate hydrogen bonds. (H1A and H2 are omitted for clarity). [Symmetry Codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x+$ $1, y-1, z+1$.

Poly[diaqua(μ_{2}-3-carboxypyrazine-2-carboxylato)(μ_{2}-pyrazine- 2,3-dicarboxylic acid)potassium(I)]

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=410.35$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.4171$ (11) \AA
$b=8.0252(12) \AA$
$c=8.1153(13) \AA$
$\alpha=68.39$ (2 $^{\circ}$
$\beta=81.18(1)^{\circ}$
$\gamma=64.24(2)^{\circ}$
$V=404.43(13) \AA^{3}$
$Z=1$
$F_{000}=210$
$D_{\mathrm{x}}=1.685 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2574 reflections
$\theta=2.7-27.5^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=303$ (2) K
Prism, colorless
$0.40 \times 0.36 \times 0.14 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Radiation source: Enhance (Mo) X-ray Source
Monochromator: graphite
Detector resolution: 8.4012 pixels mm^{-1}
$T=303(2) \mathrm{K}$

1639 independent reflections
1357 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.4^{\circ}$
$\theta_{\min }=2.7^{\circ}$

ω and φ scans

$h=-9 \rightarrow 9$
Absorption correction: numerical
[using a multifaceted crystal model based on expressions derived by Clark \& Reid (1995)]
$T_{\min }=0.858, T_{\max }=0.947$
$l=-10 \rightarrow 10$
4541 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.089$
$S=0.82$
1639 reflections
141 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0664 P)^{2}+0.1925 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.043 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	$0.2243(2)$	$-0.0442(2)$	$0.6857(2)$	$0.0317(4)$	
H1A	0.0951	-0.0140	0.6552	0.038^{*}	
C2	$0.3500(2)$	$-0.2386(2)$	$0.7694(2)$	$0.0335(4)$	
H2	0.3046	-0.3358	0.7905	0.040^{*}	
C3	$0.5925(2)$	$-0.1443(2)$	$0.78702(18)$	$0.0249(3)$	
C4	$0.4681(2)$	$0.0507(2)$	$0.69820(18)$	$0.0236(3)$	
C5	$0.5421(2)$	$0.2104(2)$	$0.6487(2)$	$0.0289(3)$	
C6	$0.8033(2)$	$-0.2156(2)$	$0.8493(2)$	$0.0277(3)$	
N1	$0.28268(17)$	$0.10040(18)$	$0.64756(16)$	$0.0281(3)$	

N2	$0.53451(18)$	$-0.28984(18)$	$0.82048(17)$	$0.0310(3)$	
O1	$0.41860(17)$	$0.38402(16)$	$0.56448(17)$	$0.0394(3)$	0.50
H1	$0.476(7)$	$0.455(6)$	$0.533(5)$	$0.039(11)^{*}$	
O2	$0.94651(16)$	$-0.29530(18)$	$0.77161(16)$	$0.0392(3)$	
O3	$0.14687(17)$	$0.66521(18)$	$0.15762(17)$	$0.0407(3)$	
H3A	$0.195(3)$	$0.727(3)$	$0.190(3)$	$0.057(6)^{*}$	
H3B	$0.245(2)$	$0.563(2)$	$0.149(3)$	$0.057(6)^{*}$	
O4	$0.71570(17)$	$0.16296(17)$	$0.68558(19)$	$0.0476(4)$	
O5	$0.80518(19)$	$-0.1943(2)$	$1.00104(17)$	$0.0504(4)$	
H5	$0.925(4)$	$-0.241(4)$	$1.038(3)$	$0.065(7)^{*}$	
K1	0.0000	0.5000	0.5000	$0.0471(2)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0200(7)$	$0.0376(8)$	$0.0396(8)$	$-0.0125(6)$	$-0.0024(6)$	$-0.0137(7)$
C2	$0.0279(8)$	$0.0336(8)$	$0.0424(9)$	$-0.0165(6)$	$0.0010(6)$	$-0.0120(7)$
C3	$0.0220(7)$	$0.0276(7)$	$0.0250(7)$	$-0.0091(6)$	$-0.0002(5)$	$-0.0101(5)$
C4	$0.0213(7)$	$0.0259(7)$	$0.0239(7)$	$-0.0076(6)$	$-0.0016(5)$	$-0.0107(5)$
C5	$0.0255(7)$	$0.0271(7)$	$0.0356(8)$	$-0.0088(6)$	$-0.0030(6)$	$-0.0134(6)$
C6	$0.0236(7)$	$0.0241(7)$	$0.0329(8)$	$-0.0082(6)$	$-0.0042(6)$	$-0.0075(6)$
N1	$0.0210(6)$	$0.0293(6)$	$0.0322(7)$	$-0.0067(5)$	$-0.0031(5)$	$-0.0116(5)$
N2	$0.0253(6)$	$0.0274(6)$	$0.0377(7)$	$-0.0107(5)$	$-0.0017(5)$	$-0.0079(5)$
O1	$0.0301(6)$	$0.0261(6)$	$0.0558(8)$	$-0.0121(5)$	$-0.0066(5)$	$-0.0039(5)$
O2	$0.0221(5)$	$0.0465(7)$	$0.0535(7)$	$-0.0108(5)$	$0.0004(5)$	$-0.0257(6)$
O3	$0.0316(6)$	$0.0372(7)$	$0.0555(8)$	$-0.0072(5)$	$-0.0149(5)$	$-0.0206(6)$
O4	$0.0308(6)$	$0.0333(6)$	$0.0824(10)$	$-0.0118(5)$	$-0.0192(6)$	$-0.0174(6)$
O5	$0.0297(6)$	$0.0743(9)$	$0.0417(7)$	$-0.0057(6)$	$-0.0116(5)$	$-0.0282(6)$
K1	$0.0338(3)$	$0.0339(3)$	$0.0456(3)$	$-0.0005(2)$	$-0.0012(2)$	$0.0006(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.327(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(2)$
$\mathrm{C} 1-\mathrm{H} 1 A$	0.9300
$\mathrm{C} 2-\mathrm{N} 2$	$1.331(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{N} 2$	$1.3381(19)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.392(2)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.5097(19)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.3397(18)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.507(2)$
$\mathrm{C} 5-\mathrm{O} 4$	$1.2248(18)$
$\mathrm{C} 5-\mathrm{O} 1$	$1.2760(19)$
$\mathrm{C} 6-\mathrm{O} 2$	$1.1983(19)$
$\mathrm{C} 6-\mathrm{O} 5$	$1.3073(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$121.91(13)$

N1-K1	2.8655 (15)
O1-K1	2.8995 (12)
O1-H1	0.80 (4)
O3-K1	2.8771 (15)
O3-H3A	0.85 (2)
O3-H3B	0.848 (9)
O5-H5	0.86 (3)
$\mathrm{K} 1-\mathrm{N} 1^{\text {i }}$	2.8655 (15)
$\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	2.8771 (15)
$\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	2.8995 (12)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	3.0897 (13)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	3.0897 (13)
K1-H3A	3.09 (2)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3$	72.84 (4)

sup-4

N1-C1-H1A	119.0
C2-C1-H1A	119.0
N2-C2-C1	121.64 (14)
N2-C2-H2	119.2
C1-C2-H2	119.2
N2-C3-C4	121.58 (13)
N2-C3-C6	113.19 (12)
C4-C3-C6	125.20 (13)
N1-C4-C3	121.03 (13)
N1-C4-C5	118.15 (13)
C3-C4-C5	120.76 (13)
O4-C5-O1	125.67 (14)
O4-C5-C4	118.05 (13)
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	116.21 (13)
O2-C6-O5	126.25 (14)
O2-C6-C3	121.86 (13)
O5-C6-C3	111.63 (13)
C1-N1-C4	117.01 (13)
C1-N1-K1	119.50 (9)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1$	123.12 (9)
C2-N2-C3	116.78 (13)
C5-O1-K1	125.42 (10)
C5-O1-H1	109 (3)
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{H} 1$	126 (3)
C6-O2-K1 ${ }^{\text {iv }}$	132.38 (10)
K1-O3-H3A	96.3 (15)
$\mathrm{K} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	99.8 (15)
H3A-O3-H3B	106.6 (13)
C6-O5-H5	111.0 (16)
N1 ${ }^{\text {i }}$-K1-N1	180.0
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3^{\mathrm{i}}$	107.16 (4)
N1-K1-O3 ${ }^{\text {i }}$	72.84 (4)
N1-C1-C2-N2	1.9 (2)
N2-C3-C4-N1	2.1 (2)
C6-C3-C4-N1	179.87 (13)
N2-C3-C4-C5	-174.99 (13)
C6-C3-C4-C5	2.8 (2)
N1-C4-C5-O4	-175.63 (14)
C3-C4-C5-O4	1.5 (2)
N1-C4-C5-O1	1.5 (2)
C3-C4-C5-O1	178.67 (13)
N2-C3-C6-O2	74.92 (18)

N1-K1-O3	107.16 (4)
O3 ${ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3$	180.0
$\mathrm{N} 1^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}}$	55.92 (4)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	124.08 (4)
O3 ${ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}}$	76.02 (4)
O3-K1-O1 ${ }^{\text {i }}$	103.98 (4)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	124.08 (4)
N1-K1-O1	55.92 (4)
O3 ${ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	103.98 (4)
O3-K1-O1	76.02 (4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1$	180.000 (1)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{2 i}$	107.44 (4)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	72.56 (4)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	116.00 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	64.00 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	81.35 (3)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {ii }}$	98.65 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	72.56 (4)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	107.44 (4)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	64.00 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	116.00 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	98.65 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	81.35 (4)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	180.00 (2)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{H} 3 \mathrm{~A}$	70.6 (3)
N1-K1-H3A	109.4 (3)
O3 ${ }^{\text {i }}$-K1-H3A	164.1 (2)
O3-K1-H3A	15.9 (2)
O1 ${ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{H} 3 \mathrm{~A}$	112.9 (3)
O1-K1-H3A	67.1 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{H} 3 \mathrm{~A}$	79.1 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{H} 3 \mathrm{~A}$	100.9 (2)
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1$	-175.29 (12)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1$	7.78 (19)
O5-C6-O2-K1 ${ }^{\text {iv }}$	154.68 (13)
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 2-\mathrm{K} 1^{\text {iv }}$	-19.1 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	61.01 (11)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {i }}$	-111.76 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3$	-118.99 (11)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 3$	68.24 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	1.94 (12)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	-170.83 (10)

supplementary materials

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 2$	$-103.06(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1$	$-178.06(12)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 5$	$-99.65(16)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 1$	$9.17(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6-\mathrm{O} 5$	$82.37(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	$-64.29(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$-1.8(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O}^{\mathrm{ii}}$	$122.94(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1$	$-174.99(12)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	$115.71(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$-0.1(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	$-57.06(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$177.00(12)$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1^{\mathrm{i}}$	$171.23(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 1$	$-8.77(11)$	
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1-\mathrm{K} 1$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3^{\mathrm{i}}$	$48.85(13)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3$	$-131.15(13)$	
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	$-70.80(17)$	$109.20(13)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$-1.9(2)$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x-1, y+1, z$; (iv) $x+1, y-1, z$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{v}}$	$0.85(2)$	$1.899(10)$	$2.7334(17)$	$167(2)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.848(9)$	$2.035(10)$	$2.8701(19)$	$168(2)$
$\mathrm{O}^{\mathrm{V}}-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{vi}}$	$0.86(3)$	$1.76(3)$	$2.5994(17)$	$168(2)$
$\mathrm{O}^{\mathrm{Vi}} \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{v}}$	$0.80(4)$	$1.68(4)$	$2.480(2)$	$171(5)$

Symmetry codes: (v) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (vi) $x+1, y-1, z+1$.

Fig. 1

supplementary materials

Fig. 2

